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Abstract. The roughening of interfaces moving in inhomogeneous media is investigated by numerical in-
tegration of the phenomenological stochastic differential equation proposed by Kardar, Parisi, and Zhang
[Phys. Rev. Lett. 56, 889 (1986)] with quenched noise (QKPZ) [Phys. Rev. Lett. 74, 920 (1995)]. We
express the evolution equations for the mean height and the roughness into two contributions: the local
and the lateral one in order to compare them with the local and the lateral contributions obtained for the
directed percolation depinning models (DPD) introduced independently by Tang and Leschhorn [Phys.
Rev A 45, R8309 (1992)] and Buldyrev et al. [Phys. Rev A 45, R8313 (1992)]. These models are classified
in the same universality class of the QKPZ although the mechanisms of growth are quite different. In the
DPD models the lateral contribution is a coupled effect of the competition between the local growth and
the lateral one. In these models the lateral contribution leads to an increasing of the roughness near the
criticality while in the QKPZ equation this contribution always flattens the roughness.

PACS. 47.55.Mh Flows through porous media – 68.35.Ja Surface and interface dynamics and vibrations
– 05.10.-a Computational methods in statistical physics and nonlinear dynamics

1 Introduction

The description of the noise-driven growth that leads to
self-affine interface far from equilibrium is a challenging
problem. The interface has been characterized through
scaling of the interfacial width w with time t and lateral
size L. It is well known that interfacial width w ∼ tβ

for t � t∗ and w ∼ Lα for t � t∗, where β and α
are the dynamical and roughness exponents, respectively
and t∗ ' Lα/β is the crossover time between the two
regimes. This scaling behavior is observed in many ex-
perimental situations and many models of surface growth.
The values of the exponents lead to their classification
in universality classes. Several models, belonging to the
directed percolation universality class, have been intro-
duced in order to explain some experiments like the fluid
imbibition in porous media, roughening in slow combus-
tion of paper, etc. These models are called directed per-
colation depinning (DPD) models. The DPD models take
into account the most important features of the experi-
ments [1,2]. These models were simultaneously introduced
by Buldyrev et al. [1] and Tang and Leschhorn [3] in or-
der to explain the fluid imbibition in paper sheet. The ad-
vancement of the fluid through the media is modeled by a
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driving force p while the disorder of the media, that brake
this advancement, is represented by a noise quenched in
the substratum. For driving forces below the critical pres-
sure pc, the advancement of the interfaces is halted (pin-
ning phase), while above this pressure the interface moves
without stopping (moving phase). Many efforts have been
done in order to classify the DPD models in the univer-
sality class of the phenomenological stochastic differential
equation proposed by Kardar, Parisi, and Zhang (KPZ) [4]
with quenched noise (QKPZ) [5]. Numerical studies [6,7]
indicate that the coefficient of the nonlinearity is rele-
vant at the depinning transition for discrete models in
anisotropic media. These results only show that the non-
linear term exist but they do not confirm that these mod-
els are represented by the QKPZ. However the exponents
obtained by numerical simulation of the QKPZ, without
thermal noise [8], agree very good with those of the model
in anisotropic media.

The DPD models have been recently reviewed by
Braunstein et al. [9,10] from a different point of view than
the traditional one. The principal contribution was the
restatement of the microscopic equation for each model.
These equations allow the separation of the mechanisms
of growth into two contributions: the local and the lat-
eral one. Given a site, the local contribution takes into
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account the process of growth in this site, while the lat-
eral one is due to the contributions of his first-neighbors.
However, in these works, the local contribution is not local
in the sense that it depends of the first-neighbor too. They
found that the lateral contribution to the temporal deriva-
tive of the square interface width (DSIW) may be either
negative or positive and that the behavior of this contribu-
tion depends on the pressure p, where p is the microscopic
driving force. The negative contribution tends to smooth
out the surface, this case dominate for p � pc. The pos-
itive contribution enhances the roughness. At the critical
pressure the local contribution to the DSIW is practically
constant, but the lateral contribution is very strong. This
last contribution, has important duties on the power law
behavior in the DPD models.

The aim of this paper is to show that the mechanisms
that drive to the scaling behavior in the DPD models are
quite different from the mechanisms of the QKPZ equa-
tion. In this work we make, for the Tang and Leschhorn
model [3] and the QKPZ equation, a separation of contri-
butions depending of the mechanisms of growth: the local
contribution which is independent on the neighbors and
the lateral contribution which depends on the neighbors.
In this context we show that the results obtained from
the QKPZ equation are quite different from the ones ob-
tained in the DPD models even if they drive to the same
macroscopic behavior. In the present paper we focus only
on the dynamical behavior of the mean height and rough-
ness, i.e. t� t∗ ' L. The paper is organized as follows. In
Section 2 we separate the QKPZ equation into two con-
tributions. Similar separation is made in Section 3 for the
evolution equations of the DPD model. After, we compare
the DPD models with the QKPZ equation in Section 4.
Finally, we present the main conclusions in Section 5.

2 The QKPZ equation and his mechanisms
of growth

The QKPZ equation for the surface height h = h(x, t), in
1 + 1-dimension, is given by

∂th = F + ν ∂2
xh+

λ

2
(∂xh)2 + η(x, h) , (1)

where F is the uniform driving force, ν and λ are con-
stants, and the quenched noise η depends on the one-
dimensional coordinate x and the height h.

We can distinguish two contributions to this equation,
the local growth S = F + η(x, h) and the lateral one L =
ν ∂2

xh + λ
2 (∂xh)2. With this separation in mind, we can

write the evolution equation for the mean height as

〈∂th〉 = 〈S〉 + 〈L〉 , (2)

where 〈. . . 〉 denotes average over the lattice. Taking the
derivative of the square interface width, w2 = 〈(h−〈h〉)2〉,
its evolution equation is given by

∂tw
2 = 2〈(h− 〈h〉)S〉 + 2〈(h− 〈h〉)L〉 . (3)

Fig. 1. Plots of F−1 〈dh/dt〉 vs. t for λ = 1 obtained from the
QKPZ equation. The parameter F is 0.56 (5) in the moving
phase, 0.464 (©) in the critical phase, and 0.43 (�) in the
pinned phase.

The first term in equations (2) and (3) can be identified as
the local growth contribution and the second term as the
lateral growth contribution. The separation into these two
terms allows us to compare the mechanisms of growth in
the QKPZ equation with the ones of the DPD models. We
have performed the direct numerical integration of equa-
tion (1) for different values of λ and ν = 1. The details
are given in Appendix.

In Figure 1 we show the mean height speed (MHS),
computed with the right side of equation (2), as a function
of time in the three regimes (moving, critical and pinning
phases) for λ = 1. The initial condition for the MHS is F
in all regimes. The MHS shows a power law behavior with
the dynamical exponent β − 1 = −0.35 ± 0.01 for Fc =
0.464, where Fc is the critical driving force. In the moving
and pinning phases we can see that this power law does
not hold. Below the criticality, in the pinning phase, the
MHS goes to zero. In the moving phase (F > Fc), the
MHS goes to a constant value.

In Figure 2 we show the contributions to the MHS in
the asymptotic dynamic regime: the local one 〈S〉 and the
lateral one 〈L〉. In this regime, in the critical and the pin-
ning phase, the local contribution breaks the advancement
of the interface while in the moving phase it is practically
constant. The lateral contribution enhances the velocity
of the interface in the moving phase, while in the criti-
cal and pinning phases it helps to arrest his advancement.
Although their sum leads to a power law only at the crit-
icality.

Figure 3 shows the DSIW as a function of time ob-
tained from the right side of equation (3) for various values
of F and λ = 1. The power law with 2β− 1 = 0.32± 0.04
holds only at the criticality. In the moving phase a ex-
ponent 2βm − 1 ' −0.46, very close to the thermal KPZ
one, is recovered. The slope β is independent of λ. At the
criticality, as λ increases, the scaling dynamical regime is
reached before. This is due to the fact that the lateral con-
tribution, which is the main responsible of the generation
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Fig. 2. Semi-ln plots of the different contributions of the
QKPZ equation to the MHS as a function of time. The top
(bottom) plot shows the local (lateral) contribution for the
same values of F and λ as in Figure 1.

Fig. 3. DSIW for the QKPZ equation as a function of time,
in the three phases for λ = 1 and F = 0.56 (5), 0.464 (©),
and 0.43 (�).

Fig. 4. Semi-ln plots of the different contributions of the
QKPZ equation to the DSIW as a function of time. The top
(bottom) plot shows the local (lateral) contribution for the
same values of F and λ as in Figure 3.

of correlations, becomes more important earlier for larger
values of λ.

In Figure 4 we show the two contributions to the
DSIW for different values of F . The local contribution
2〈(h − 〈h〉)S〉 to the DSIW is always positive. As F de-
creases, this contribution also decreases slowly, but al-
ways roughen the interface. On the other hand, the lateral
contribution 2〈(h − 〈h〉)L〉 takes negative values in every
phases, smoothing out the surface.

3 Macroscopic contributions from the DPD
model

We consider the evolution for the height of the ith site of
the DPD model [3]. We assume periodic boundary condi-
tions in a one-dimensional lattice of L sites. At the time t
a site i is chosen at random with probability 1/L. Let us
denote by hi(t) the height of the ith generic site at time t.
The set of {hi, i = 1, . . . , L} defines the interface between
wet and dry cells. The time evolution for the interface in
a time step δt = 1/L is

hi(t+ δt) = hi(t) +
1
L
Gi(hi, hi±1, hi±2) , (4)



292 The European Physical Journal B

where

Gi = Zi+1 + Zi−1 + Fi(h′i) (1− Zi) , (5)

with

Zi±1 = Θ(hi±1 − hi − 2)

×{[1−Θ(hi − hi±2)] +
1
2
δhi,hi±2} ,

Zi = Θ(hi −min(hi−1, hi+1)− 2) .

Here h′i = hi+1 and Θ(x) is the unit step function defined
as Θ(x) = 1 for x ≥ 0 and equals to 0 otherwise. Fi(h′i) =
Θ(p−ηi(h′i)) is the competition between the driving force p
and the quenched disorder ηi(h′i) in the substratum just
above the interface. Gi takes into account all the possible
ways the site i can growth. Equation (5) can be separated
into two contributions:

Gid = Zi+1 + Zi−1 − Fi(h′i)Zi , (6)
Gil = Fi . (7)

The first one, that we shall call the lateral contribution,
takes into account the effect of the neighbors of the site
i, while the second one, that we shall call local contribu-
tion, does not depend of the neighbors of this site. Replac-
ing L = 1/δt and taking the limit δt → 0, equation (4)
becomes dhi/dt = Gi. Averaging over the lattice we ob-
tain (h = hi) 〈

dh
dt

〉
= 〈(1− Fi)Zi〉+ 〈Fi〉. (8)

This equation allow us the identification of two separate
contributions: the lateral one 〈(1 − Fi)Zi〉 and the local
one 〈Fi〉. Notice that in the lateral contribution the local
effect of the competition between the driving force and dis-
order Fi, arises from the model. In that sense, in the DPD
model, the disorder is coupled to the lateral contribution.
Figure 5 shows the lateral and the local contributions as
a function of the time for various values of p. We can see
that the behavior of both contributions are equal that the
ones proposed by Braunstein et al. [9,10]. We have made
a different separation in this work in order to compare the
contributions in the DPD models directly with the ones
in the QKPZ equation.

From equation (4), the temporal derivative of the
square interface width (DSIW) is:

dw2

dt
= 2 〈(hi − 〈hi〉)Gi〉. (9)

Replacing Gi, by its two contributions given by equa-
tions (6) and (7) the lateral contribution of the DSIW is

2 [ 〈Zi min(hi−1, hi+1)〉 − 〈Zi〉 〈hi〉
− ( 〈hi Fi Zi〉 − 〈hi〉 〈Fi Zi〉) ] , (10)

and the local contribution is

2 [ 〈hi Fi〉 − 〈hi〉 〈Fi〉 ] , (11)

Fig. 5. Semi-ln plots of the different contributions of the DPD
model to the MHS as a function of time. The top (bottom) plot
shows the local (lateral) contribution for p = 0.7 (5), 0.461
(©), and 0.4 (�) in the moving, critical and pinned phases,
respectively.

where the relation Θ(x−x′)+Θ(x′−x)− δ(x, x′) = 1 has
been used to derive the lateral contribution. In Figure 6
we plot both contributions as a function of time for vari-
ous values of p. The behavior of this contribution depends
on p. Computing equation (10) from numerical simula-
tions we found that the lateral contribution is negative
or positive depending on the value of the pressure p. The
negative contribution tends to smooth out the surface.
Figure 6 shows that this case dominates for great values
of p. The positive contribution enhances the roughness.
This last effect is very important at the critical value. At
this value, the local contribution is practically constant,
but the lateral is the main responsible of the power law
behavior. This kind of behavior, that is not found in the
QKPZ equation, is due to a coupled effect between the
local F and the neighbors [11]. We verify the same behav-
iors for the DPD model proposed by Buldyrev et al. [1].
This kind of behavior in the roughness, above and below
the criticality, was found by Braunstein et al. [9,10] with a
different ansatz for the separation of the contributions. In
fact the behaviors of the contributions proposed in refer-
ences [9,10] are similar to the ones obtained in the present
work.
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Fig. 6. Semi-ln plots of the different contributions of the DPD
model to the DSIW as a function of time. The top (bottom)
plot shows the local (lateral) contribution for the same values
of p as in Figure 5.

4 Comparisons of the contributions
for the DPD models and the QKPZ equation

The separation between local and lateral growth in the
QKPZ equation is straightforward, while in the DPD mod-
els the lateral contribution also depends on the local one,
through {Fi}, in a multiplicative way [11]. The behavior
of the local contributions to the MHS, in the DPD models
and in the QKPZ equation, are qualitative similar even
when quantitatively they lead to a different consequence.
In the QKPZ equation the local contribution is the main
responsible of the arrest of the velocity of the interface,
mainly in the critical and pinned phases. While in the
DPD models, in the same phases, both the lateral and
the local contributions go to zero stopping the advance of
the interface. This difference between the lateral contribu-
tion in both, the equation and the model, is a consequence
of the differences in the mechanisms of growth. Notice that
in the DPD models the information of the various deriva-
tives of the height is carried out trough the lateral rules
that are coupled to the disorder of the media. In that sense
the disorder is multiplicative while in the QKPZ equation
the disorder is additive.

In the asymptotic regime, the behavior of the DSIW is
similar in the QKPZ equation and in the DPD models. In
the DPD models p is the initial condition in all regimes,
this is due to the fact that in the early regime the dy-
namic is like random deposition with probability p [12,13].
In the QKPZ equation the DSIW increases continuously
from zero to a maximum value, the macroscopic equation
presented by Braunstein et al. [12,14] for the DPD mod-
els holds in the scaling limit or hydrodynamic limit, but
breaks down at short times as was expected.

The local and the lateral contributions to the DSIW,
in the QKPZ equation and in the DPD models, are quan-
titative different. In the QKPZ the lateral contribution
is always negative smoothing out the surface. This is the
main difference with the DPD models where for p . pc,
the lateral contribution is always positive roughening the
interface. However, even when the mechanisms are quite
different, the behavior of the lateral contribution of the
QKPZ equation leads to the scaling behavior at the criti-
cality. In fact analyzing the time derivative of the lateral
contribution to the DSIW, in the model and in the equa-
tion, it is easy to check that the behaviors are similar.

Clearly despite the mechanisms of growth are different
in the DPD models and in the QKPZ equation, they give
rise to the same macroscopic scaling behavior. In the DPD
models the growing rules for the evolution of the local
height are strongly coupled to the quenched noise in a
multiplicative way, in the sense that the local growth is
coupled to the lateral one [11]. The microscopic rules that
allow the growth from an unblocked cell depend in some
way on the local slope. This slope makes the lateral growth
dominant near the criticality. In the QKPZ equation this
cross mechanism between contributions is not taken into
account because the noise is additive. Braunstein et al.
derived the continuous equation for a DPD model [11].
The equation obtained in this reference has the same terms
that the QKPZ equation but its coefficients depend on the
competition between the driving force and the quenched
noise, in this way the noise is multiplicative. Nevertheless,
the DPD models could belong to the same universality
class that the QKPZ equation although the dynamic in
both models is very different.

5 Conclusions

We express the evolution equations of the QKPZ equa-
tion and the DPD models for the mean height and the
roughness into two contributions: the local and the lat-
eral one in order to compare them. The local and lateral
mechanisms are quite different in both, the equation and
the model. In the QKPZ equation these mechanisms are
additive while in the DPD models the local mechanism
is coupled to the lateral one. In fact the quenched disor-
der acts in a multiplicative way on the dynamic of the
interface. The behavior of the local contributions to the
MHS, in the DPD models and in the QKPZ equation, are
qualitative similar even when quantitatively they lead to
a different consequence. In the QKPZ equation the local
contribution is the main responsible of the arrest of the
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velocity of the interface, mainly in the critical and pinned
phases. While in the DPD models, in the same phases,
both the lateral and the local contributions go to zero
stopping the advance of the interface. The local and the
lateral contributions to the DSIW, in the QKPZ equation
and in the DPD models, are quantitative different. In the
QKPZ equation the lateral contribution is always negative
smoothing out the surface. This is the main difference with
the DPD models where for p . pc, the lateral contribution
is always positive roughening the interface. However, the
behavior of the lateral contribution of the QKPZ equation
leads to the scaling behavior at the criticality. Both, the
QKPZ equation and the DPD models, belong to the same
universality class although their microscopic dynamics are
very different each other.

A. D́ıaz-Sánchez acknowledges support from a Postdoctoral
Grant from the European TMR Network-Fractals under Con-
tract No. FMRXCT980183.

Appendix

We perform the numerical integration of the QKPZ equa-
tion in one dimension in the discretized version [15,16]

h(x, t+4t) = h(x, t)
+4t { h(x− 1, t) + h(x+ 1, t)− 2h(x, t)

+
λ

8
{h(x+ 1, t)− h(x− 1, t)}2

+F + (1− p)η(x, [h(x, t)])
+pη(x, [h(x, t)] + 1) } ,

where [. . . ] denotes the integer part and η is uni-
formly distributed in [−a/2, a/2] with a = 102/3.
p = h(x, t)−[h(x, t)] is used to take the linear interpolation

of the noise term into account. We work with square lattice
systems of edge L = 8192 and periodic boundary condi-
tions in the x-direction are assumed. We use 4t = 0.01.
The initial condition is h(x, 0) = 0. The averages were
taken over 100 different realizations of quenched noise.
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